Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
New Phytol ; 239(2): 576-591, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222272

RESUMO

Water stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems. For eight rainforest species, we dehydrated and subsequently rehydrated leaves, and measured water stress thresholds for declines in rehydration capacity and maximum quantum yield of photosystem II (Fv /Fm ). We tested correlations with embolism resistance and dry season water potentials (ΨMD ), and calculated safety margins for damage (ΨMD - thresholds) and tested correlations with drought resilience in sap flow and growth. Ψ thresholds for persistent declines in Fv /Fm , indicating resilience, were positively correlated with ΨMD and thresholds for leaf vein embolism. Safety margins for persistent declines in Fv /Fm , but not rehydration capacity, were positively correlated with drought resilience in sap flow. Correlations between resistance and resilience suggest that species' differences in performance during drought are perpetuated after drought, potentially accelerating shifts in forest composition. Resilience to photochemical damage emerged as a promising functional trait to characterize whole-plant drought resilience.


Assuntos
Desidratação , Floresta Úmida , Ecossistema , Secas , Folhas de Planta , Árvores
2.
Biota Neotrop. (Online, Ed. ingl.) ; 23(1): e20221384, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1429921

RESUMO

Abstract Canga ecosystems are iron-rich habitats and pose a challenge for conservation and environmental governance in Brazil. They support high levels of biodiversity and endemism and, at the same time, have suffered intense losses and degradation due to large-scale iron ore mining. The Peixe Bravo River Valley in the Brazilian savanna is one of the last natural canga areas that has yet to face the irreversible impacts of mining. However, there are vast gaps in data on the vegetation cover, location, spatial distribution, and area of occurrence of this ecosystem. Therefore, more information is needed on the appropriate scale, without which it is difficult to establish conservation planning and strategies to prevent, mitigate or compensate for impacts on canga ecosystems. In this study, we provide the first map of canga ecosystems in Brazil using the U-Net deep learning model and Sentinel-2 images. In addition, we estimate the degree of direct threat faced by ecosystems due to the spatial overlap of the mapped cangas and the location of mining concession areas for iron ore exploitation. The deep learning algorithm identified and segmented 762 canga patches (overall accuracy of 98.5%) in an area of 30,000 ha in the Peixe Bravo River Valley, demonstrating the high predictive power of the mapping approach. We conclude that the direct threat to canga ecosystems is high since 99.6% of the observed canga patches are included in mining concession areas. We also highlight that the knowledge acquired about the distribution of cangas through the application of an effective method of artificial intelligence and the use of open-source satellite images is especially important for supporting conservation strategies and environmental public policies.


Resumo Os ecossistemas de Canga, habitats com elevadas concentrações de ferro, são um desafio para conservação e governança ambiental no Brasil. Eles sustentam uma alta biodiversidade e endemismo, e sofreram intensas perdas e degradações de áreas naturais devido à mineração de ferro em larga escala. O Vale do Rio Peixe Bravo, localizado no Cerrado brasileiro, é uma das últimas regiões com ecossistemas de canga que ainda não sofreu impactos irreversíveis da mineração. Mas ainda há ausência de dados sobre a cobertura vegetal, localização, distribuição geográfica e a área de ocorrência desse ecossistema. Portanto, a ausência de informações em escala adequada dificulta o planejamento em conservação e as estratégias para prevenir, mitigar ou compensar os impactos nos ecossistemas de canga. Neste estudo, nós fornecemos o primeiro mapa de ecossistemas de canga no Brasil elaborado a partir de deep learning segmentação U-Net e imagens de satélite Sentinel-2. Além disso, nós estimamos o grau de ameaça direta dos ecossistemas devido a sobreposição espacial das manchas de cangas preditas e a localização dos títulos de concessão minerária para exploração do minério de ferro. O algoritmo de aprendizado profundo identificou 762 manchas de canga (acurácia acima de 98,5%) em uma área de 30.000 ha no Vale do Rio Peixe Bravo, demonstrando o alto poder preditivo do método de mapeamento. Nós estimamos que há um alto grau de ameaça direta aos ecossistemas de canga, uma vez que 99,6% das manchas de cangas preditas estão incluídas em áreas de concessão de mineração. Nós também destacamos que o conhecimento adquirido sobre a distribuição das cangas por meio da aplicação de um método eficaz de inteligência artificial e do uso de imagens de satélite de código aberto é especialmente importante para apoiar estratégias de conservação e políticas públicas ambientais.

3.
Sci Rep ; 11(1): 20437, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650097

RESUMO

Mapping the spatial distribution of a plant is a current challenge in ecology. Here, a convolutional neural network (CNN) and 33,798 Sentinel-2 satellite images were used to detect and map forest stands dominated by trees of the genus Pleroma by their magenta-to-deep-purple blossoms in the entire Brazilian Atlantic Forest domain, from June 2016 to July 2020. The Pleroma genus, known for its pioneer behaviour, was detected in an area representing 10.8% of the Atlantic Forest, associated negatively with temperature and positively with elevation, slope, tree cover and precipitation. The detection of another genus by the model, 18% of all the detections contained only pink blooming Handroanthus trees, highlighted that botanical identification from space must be taken with caution, particularly outside the known distribution range of the species. The Pleroma blossom seasonality occurred over a period of ~5-6 months centered on the March equinox and populations with distinct blossom timings were found. Our results indicate that in the Atlantic Forest, the remaining natural forest is less diverse than expected but is at least recovering from degradation. Our study suggests a method to produce ecological-domain scale maps of tree genera and species based on their blossoms that could be used for tree studies and biodiversity assessments.

4.
Sci Rep ; 11(1): 1388, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446809

RESUMO

We report large-scale estimates of Amazonian gap dynamics using a novel approach with large datasets of airborne light detection and ranging (lidar), including five multi-temporal and 610 single-date lidar datasets. Specifically, we (1) compared the fixed height and relative height methods for gap delineation and established a relationship between static and dynamic gaps (newly created gaps); (2) explored potential environmental/climate drivers explaining gap occurrence using generalized linear models; and (3) cross-related our findings to mortality estimates from 181 field plots. Our findings suggest that static gaps are significantly correlated to dynamic gaps and can inform about structural changes in the forest canopy. Moreover, the relative height outperformed the fixed height method for gap delineation. Well-defined and consistent spatial patterns of dynamic gaps were found over the Amazon, while also revealing the dynamics of areas never sampled in the field. The predominant pattern indicates 20-35% higher gap dynamics at the west and southeast than at the central-east and north. These estimates were notably consistent with field mortality patterns, but they showed 60% lower magnitude likely due to the predominant detection of the broken/uprooted mode of death. While topographic predictors did not explain gap occurrence, the water deficit, soil fertility, forest flooding and degradation were key drivers of gap variability at the regional scale. These findings highlight the importance of lidar in providing opportunities for large-scale gap dynamics and tree mortality monitoring over the Amazon.

5.
PLoS One ; 15(2): e0229448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32109946

RESUMO

The Atlantic rainforest of Brazil is one of the global terrestrial hotspots of biodiversity. Despite having undergone large scale deforestation, forest cover has shown signs of increases in the last decades. Here, to understand the degradation and regeneration history of Atlantic rainforest remnants near São Paulo, we combine a unique dataset of very high resolution images from Worldview-2 and Worldview-3 (0.5 and 0.3m spatial resolution, respectively), georeferenced aerial photographs from 1962 and use a deep learning method called U-net to map (i) the forest cover and changes and (ii) two pioneer tree species, Cecropia hololeuca and Tibouchina pulchra. For Tibouchina pulchra, all the individuals were mapped in February, when the trees undergo mass-flowering with purple and pink blossoms. Additionally, elevation data at 30m spatial resolution from NASA Shuttle Radar Topography Mission (SRTM) and annual mean climate variables (Terraclimate datasets at ∼ 4km of spatial resolution) were used to analyse the forest and species distributions. We found that natural forests are currently more frequently found on south-facing slopes, likely because of geomorphology and past land use, and that Tibouchina is restricted to the wetter part of the region (southern part), which annually receives at least 1600 mm of precipitation. Tibouchina pulchra was found to clearly indicate forest regeneration as almost all individuals were found within or adjacent to forests regrown after 1962. By contrast, Cecropia hololeuca was found to indicate older disturbed forests, with all individuals almost exclusively found in forest fragments already present in 1962. At the regional scale, using the dominance maps of both species, we show that at least 4.3% of the current region's natural forests have regrown after 1962 (Tibouchina dominated, ∼ 4757 ha) and that ∼ 9% of the old natural forests have experienced significant disturbance (Cecropia dominated).


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Monitoramento Ambiental , Redes Neurais de Computação , Floresta Úmida , Árvores/crescimento & desenvolvimento , Especificidade da Espécie , Árvores/classificação
6.
Nat Commun ; 9(1): 536, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440640

RESUMO

Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km2. Gross emissions from forest fires (989 ± 504 Tg CO2 year-1) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

7.
Ecol Appl ; 27(8): 2514-2527, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28922585

RESUMO

The strong El Niño Southern Oscillation (ENSO) event that occurred in 2015-2016 caused extreme drought in the northern Brazilian Amazon, especially in the state of Roraima, increasing fire occurrence. Here we map the extent of precipitation and fire anomalies and quantify the effects of climatic and anthropogenic drivers on fire occurrence during the 2015-2016 dry season (from December 2015 to March 2016) in the state of Roraima. To achieve these objectives we first estimated the spatial pattern of precipitation anomalies, based on long-term data from the TRMM (Tropical Rainfall Measuring Mission), and the fire anomaly, based on MODIS (Moderate Resolution Imaging Spectroradiometer) active fire detections during the referred period. Then, we integrated climatic and anthropogenic drivers in a Maximum Entropy (MaxEnt) model to quantify fire probability, assessing (1) the model accuracy during the 2015-2016 and the 2016-2017 dry seasons; (2) the relative importance of each predictor variable on the model predictive performance; and (3) the response curves, showing how each environmental variable affects the fire probability. Approximately 59% (132,900 km2 ) of the study area was exposed to precipitation anomalies ≤-1 standard deviation (SD) in January and ~48% (~106,800 km2 ) in March. About 38% (86,200 km2 ) of the study area experienced fire anomalies ≥1 SD in at least one month between December 2015 and March 2016. The distance to roads and the direct ENSO effect on fire occurrence were the two most influential variables on model predictive performance. Despite the improvement of governmental actions of fire prevention and firefighting in Roraima since the last intense ENSO event (1997-1998), we show that fire still gets out of control in the state during extreme drought events. Our results indicate that if no prevention actions are undertaken, future road network expansion and a climate-induced increase in water stress will amplify fire occurrence in the northern Amazon, even in its humid dense forests. As an additional outcome of our analysis, we conclude that the model and the data we used may help to guide on-the-ground fire-prevention actions and firefighting planning and therefore minimize fire-related ecosystems degradation, economic losses and carbon emissions in Roraima.


Assuntos
Mudança Climática , El Niño Oscilação Sul , Florestas , Incêndios Florestais , Brasil , Secas , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...